THE $\eta(1405)$, $\eta(1475)$, $f_1(1420)$, AND $f_1(1510)$

Revised January 2008 by C. Amsler (Zürich) and A. Masoni (INFN Cagliari).

The first observation of the $\eta(1440)$ was made in $p\overline{p}$ annihilation at rest into $\eta(1440)\pi^+\pi^-$, $\eta(1440)\to K\overline{K}\pi$ (BAILLON 67). This state was reported to decay through $a_0(980)\pi$ and $K^*(892)\overline{K}$ with roughly equal contributions. The $\eta(1440)$ was also observed in radiative $J/\psi(1S)$ decay to $K\overline{K}\pi$ (SCHARRE 80, EDWARDS 82E, AUGUSTIN 90) and $\gamma\rho$ (BAI 04J). There is now evidence for the existence of two pseudoscalars in this mass region, the $\eta(1405)$ and $\eta(1475)$. The former decays mainly through $a_0(980)\pi$ (or direct $K\overline{K}\pi$) and the latter mainly to $K^*(892)\overline{K}$.

The simultaneous observation of two pseudoscalars is reported in three production mechanisms: $\pi^- p$ (RATH 89, ADAMS 01);radiative $J/\psi(1S)$ decay (BAI 90C, AUGUSTIN 92); and $\overline{p}p$ annihilation at rest (BERTIN 95, BERTIN 97, CICALO 99, NICHITIU 02). All of them give values for the masses, widths, and decay modes in reasonable agreement. However, AUGUSTIN 92 favors a state decaying into $K^*(892)\overline{K}$ at a lower mass than the state decaying into $a_0(980)\pi$, although agreement with MARK-III is not excluded. In $J/\psi(1S)$ radiative decay, the $\eta(1405)$ decays into $KK\pi$ through $a_0(980)\pi$, and hence a signal is also expected in the $\eta\pi\pi$ mass spectrum. This was indeed observed by MARK III in $\eta \pi^+ \pi^-$ (BOLTON 92B), which reports a mass of 1400 MeV, in line with the existence of the $\eta(1405)$ decaying to $a_0(980)\pi$. This state is also observed in $\overline{p}p$ annihilation at rest into $\eta \pi^+ \pi^- \pi^0 \pi^0$, where it decays into $\eta \pi \pi$ (AMSLER 95F). The intermediate $a_0(980)\pi$ accounts for roughly half of the $\eta\pi\pi$ signal, in agreement with MARK III (BOLTON 92B) and DM2 (AUGUSTIN 90).

The existence of the $\eta(1295)$ is questioned by KLEMPT 05. In KLEMPT 07, the authors also question the existence of the $\eta(1295)$, and claim a single pseudoscalar meson in the 1400 MeV region. This conclusion is based on properties of the wave functions in the 3P_0 model, and on an unpublished analysis of the annihilation $\bar{p}p \to 4\pi\eta$. The pseudoscalar signal

February 25, 2008 11:30

around 1400 MeV is then attributed to the first radial excitation of the η . However, the $\eta(1295)$ has been observed by four π^-p experiments (ADAMS 01, FUKUI 91C, ALDE 97B, MANAK 00A), and evidence is reported in $\bar{p}p$ annihilation (ANISOVICH 01, ABELE 98, AMSLER 04B). In J/ψ radiative decay, an $\eta(1295)$ signal is evident in the 0^{-+} $\eta\pi\pi$ wave of DM2 data (AUGUSTIN 92).

Assuming establishment of the $\eta(1295)$, the $\eta(1475)$ could be the first radial excitation of the η' , with the $\eta(1295)$ being the first radial excitation of the η . Ideal mixing, suggested by the $\eta(1295)$ and $\pi(1300)$ mass degeneracy, would then imply that the second isoscalar in the nonet is mainly $s\overline{s}$, and hence couples to $K^*\overline{K}$, in agreement with the $\eta(1475)$. Also its width matches the expected width for the radially excited $s\overline{s}$ state (CLOSE 97, BARNES 97).

The $K\overline{K}\pi$ and $\eta\pi\pi$ channels were studied in $\gamma\gamma$ collisions by L3 (ACCIARRI 01G). The analysis leads to a clear $\eta(1475)$ signal in $K\overline{K}\pi$, decaying to $K^*\overline{K}$, very well identified in the untagged data sample, where contamination from spin 1 resonances is not allowed. At the same time, ACCIARRI 01G did not observe $\eta(1405)$, either in $K\overline{K}\pi$ or $\eta\pi\pi$. The observation of the $\eta(1475)$, combined with the absence of an $\eta(1405)$ signal, strengthens the two-resonances hypothesis. Since gluonium production is presumably suppressed in $\gamma\gamma$ collisions, the ACCIARRI 01G results suggest that $\eta(1405)$ has a large gluonic content (see also CLOSE 97B, LI 03C).

The ACCIARRI 01G result is somewhat in disagreement with that of CLEO-II, which did not observe any pseudoscalar signal in $\gamma\gamma \to \eta(1475) \to K_S^0 K^{\pm}\pi^{\mp}$ (AHOHE 05). However, more data are required. Moreover, after the CLEO-II result, L3 performed a further analysis with full statistics (ACHARD 07), confirming the evidence of the $\eta(1475)$ observed by ACCIARRI 01G. The CLEO upper limit (AHOHE 05) for $\Gamma_{\gamma\gamma}(\eta(1475))$, and the L3 results (ACHARD 07), are consistent with the world average for the $\eta(1475)$ width.

The gluonium interpretation is not favored by lattice gauge theories which predict the 0^{-+} state above 2 GeV (BALI 93). However, the $\eta(1405)$ is an excellent candidate for the 0^{-+}

glueball in the fluxtube model (FADDEEV 04). In this model, the 0^{++} $f_0(1500)$ glueball is also naturally related to a 0^{-+} glueball with mass degeneracy broken in QCD.

A detailed review of the experimental situation is available in MASONI 06.

Let us now deal with 1^{++} isoscalars. The $f_1(1420)$, decaying to $K^*\overline{K}$, was first reported in π^-p reactions at 4 GeV/c (DION-ISI 80). However, later analyses found that the 1400–1500 MeV region was far more complex (CHUNG 85, REEVES 86, BIR-MAN 88). A reanalysis of the MARK III data in radiative $J/\psi(1S)$ decay to $K\overline{K}\pi$ (BAI 90C) shows the $f_1(1420)$, decaying into $K^*\overline{K}$. Also, a C=+1 state is observed in tagged $\gamma\gamma$ collisions (e.g., BEHREND 89).

In $\pi^- p \to \eta \pi \pi n$ charge-exchange reactions at 8–9 GeV/c, the $\eta \pi \pi$ mass spectrum is dominated by the $\eta(1440)$ and $\eta(1295)$ (ANDO 86, FUKUI 91C), and at 100 GeV/c, ALDE 97B reports the $\eta(1295)$ and $\eta(1440)$ decaying to $\eta \pi^0 \pi^0$ with a weak $f_1(1285)$ signal, and no evidence for the $f_1(1420)$.

Axial (1⁺⁺) mesons are not observed in $\overline{p}p$ annihilation at rest in liquid hydrogen, which proceeds dominantly through S-wave annihilation. However, in gaseous hydrogen, P-wave annihilation is enhanced and, indeed, BERTIN 97 reports $f_1(1420)$ decaying to $K^*\overline{K}$.

The $f_1(1420)$, decaying into $K\overline{K}\pi$, is also seen in pp central production, together with the $f_1(1285)$. The latter decays via $a_0(980)\pi$, and the former only via $K^*\overline{K}$, while the $\eta(1440)$ is absent (ARMSTRONG 89, BARBERIS 97C). The $K_SK_S\pi^0$ decay mode of $f_1(1420)$ establishes unambiguously C=+1. On the other hand, there is no evidence for any state decaying to $\eta\pi\pi$ around 1400 MeV, and hence the $\eta\pi\pi$ mode of the $f_1(1420)$ must be suppressed (ARMSTRONG 91B).

We now turn to the experimental evidence for the $f_1(1510)$. Two states, the $f_1(1420)$ and $f_1(1510)$, decaying to $K^*\overline{K}$, compete for the $s\overline{s}$ assignment in the 1^{++} nonet. The $f_1(1510)$ was seen in $K^-p \to \Lambda K\overline{K}\pi$ at 4 GeV/c (GAVILLET 82), and at 11 GeV/c (ASTON 88C). Evidence is also reported in π^-p at 8 GeV/c, based on the phase motion of the 1^{++} $K^*\overline{K}$ wave (BIRMAN 88). A somewhat broader 1^{++} signal is also observed in J/ψ radiative decay to $\eta \pi^+ \pi^-$ (BAI 99).

The absence of the $f_1(1420)$ in K^-p (ASTON 88C) argues against the $f_1(1420)$ being the $s\overline{s}$ member of the 1^{++} nonet. However, the $f_1(1420)$ was reported in K^-p but not in π^-p (BITYUKOV 84), while two experiments do not observe the $f_1(1510)$ in K^-p (BITYUKOV 84, KING 91). It is also not seen in radiative $J/\psi(1S)$ decay (BAI 90C, AUGUSTIN 92), central collisions (BARBERIS 97C), or $\gamma\gamma$ collisions (AIHARA 88C), although, surprisingly for an $s\overline{s}$ state, a signal is reported in 4π decays (BAUER 93B). These facts lead to the conclusion that $f_1(1510)$ is not well established (CLOSE 97D).

Assigning the $f_1(1420)$ to the 1⁺⁺ nonet, one finds a nonet mixing angle of $\sim 50^{\circ}$ (CLOSE 97D). However, arguments favoring the $f_1(1420)$ being a hybrid $q\overline{q}g$ meson, or a four-quark state, were put forward by ISHIDA 89 and CALDWELL 90, respectively, while LONGACRE 90 argued for a molecular state formed by the π orbiting in a P-wave around an S-wave $K\overline{K}$ state.

Summarizing, there is convincing evidence for the $f_1(1420)$ decaying to $K^*\overline{K}$, and for two pseudoscalars in the $\eta(1440)$ region, the $\eta(1405)$ and $\eta(1475)$, decaying to $a_0(980)\pi$ and $K^*\overline{K}$, respectively. The $f_1(1510)$ is not well established.